Tag Archives: Artificial Intelligence

Antietam & AI

MATE AI selected Objectives for Blue, 3D Line of Sight (3DLOS) and Range of Influence (ROI) displayed for the Antietam: Dawn General Staff scenario. Screen shot from General Staff Sand Box. Click to enlarge.

The author walking across Burnside’s Bridge in 1966 (age 12).

I have been thinking about creating an artificial intelligence (AI) that could make good tactical decisions for the battle of Antietam (September 17, 1862, Sharpsburg, Maryland) for over fifty years. At the time there was little thought of computers playing wargames.1)However, it is important to note that Arthur Samuel had begun research in 1959 into a computer program that could play checkers. See. “Samuel, Arthur L. (1959). “Some Studies in Machine Learning Using the Game of Checkers”. IBM Journal of Research and Development.” What I was envisioning was a board wargame with some sort of look-up tables and coffee grinder slide rules that properly configured (not sure how, actually) would display what we now call a Course of Action (COA), or a set of tactical orders. I didn’t get too far on that project but I did create an Antietam board wargame when I was 13 though it was hardly capable of solitaire play.

The Antietam scenario from The War College (1992). This featured 128 pre-rendered 3D views generated from USGS Digital Elevation Model Maps.

In 1992 I created my first wargame with an Antietam scenario: The War College (above). It used a scripted AI that isn’t worth talking about. However, in 2003 when I began my doctoral research into tactical AI I had the firm goal in my mind of creating software that could ‘understand‘ the battle of Antietam.

TIGER Analysis of the battle of Antietam showing Range of Influence of both armies, battle lines and RED’s avenue of retreat. TIGER screen shot. Appears in doctoral thesis, “TIGER: A Machine Learning Tactical Inference Generator,” University of Iowa 2009

The TIGER program met that goal (the definition of ‘understand’ being: performing a tactical analysis that is statistically indistinguishable from a tactical analysis performed by 25 subject matter experts; e.g.. active duty command officers, professors of tactics at military institutes, etc.).

In the above screen shot we get a snapshot of how TIGER sees the battlefield. The darker the color the greater the firepower that one side or the other can train on that area. Also shown in the above screen shot is that RED has a very restricted Avenue of Retreat; the entire Confederate army would have to get across the Potomac using only one ford (that’s the red line tracing the road net to the Potomac).  Note how overlapping ROIs cancel each other out. In my research I discovered that ROIs are very important for determining how battles are described. For example, some terms to describe tactical positions include:

  • Restricted Avenue of Attack
  • Restricted Avenue of Retreat
  • Anchored Flanks
  • Unanchored Flanks
  • Interior Lines
  • No Interior Lines

A Predicate Statement list generated by MATE for the battle of Antietam.

Between the time that I received my doctorate in computer science for this research and the time I became a Principal Investigator for DARPA on this project the name changed from TIGER to MATE (Machine Analysis of Tactical Environments) because DARPA already had a project named TIGER. MATE expanded on the TIGER AI research and added the concept of Predicate Statements. Each statement is a fact ascertained by the AI about the tactical situation on that battlefield. The most important statements appear in bold.

The key facts about the tactical situation at Antietam that MATE recognized were:

  • REDFOR’s flanks are anchored. There’s no point in attempting to turn the Confederate flanks because it can’t be done.
  • REDFOR has interior lines. Interior lines are in important tactical advantage. It allows Red to quickly shift troops from one side of the battlefield to the other while the attacker, Blue, has a much greater distance to travel.
  • REDFOR’s avenue of retreat is severely restricted. If Blue can capture the area that Red must traverse in a retreat, the entire Red army could be captured if defeated. Lee certainly was aware of this during the battle.
  • BLUEFOR’s avenue of attack is not restricted. Even though the Blue forces had two bridges (Middle Bridge and Burnside’s Bridge) before them, MATE determined that Blue had the option of a wide maneuver to the north and then west to attack Red (see below screen shot):

MATE analysis shows that Blue units are not restricted to just the two bridge crossings to attack Red. MATE screen shot.

  • BLUEFOR has the superior force. The Union army was certainly larger in men and materiel at Antietam.
  • BLUEFOR is attacking across level ground. Blue is not looking at storming a ridge like at the battle of Fredericksburg.

MATE AI selects these objectives for Blue’s attack. General Staff Sand Box screen shot. Click to enlarge.

We now come to General Staff which uses the MATE AI. General Staff clearly has a much higher resolution than the original TIGER program (1155 x 805 terrain / elevation data points versus 102 x 66, or approximately 138 times the resolution / detail). In the above screen shot the AI has selected five Objectives for Blue. I’ve added the concept of a ‘battle group’ – units that share a contiguous battle line – which in this case works out as one or two corps. Each battle group has been assigned an objective. How each battle group achieves its objective is determined by research that I did earlier on offensive tactical maneuvers 2)See, “Implementing the Five Canonical Offensive Maneuvers in a CGF Environment.” link to paper.

As always, I appreciate comments and questions. Please feel free to email me directly with either.

References

References
1 However, it is important to note that Arthur Samuel had begun research in 1959 into a computer program that could play checkers. See. “Samuel, Arthur L. (1959). “Some Studies in Machine Learning Using the Game of Checkers”. IBM Journal of Research and Development.”
2 See, “Implementing the Five Canonical Offensive Maneuvers in a CGF Environment.” link to paper.

Wargame AI Continued: Range of Influence

In two previous blogs I wrote about how Artificial Intelligence (AI) for wargames perceive battle lines and terrain and elevation. Today the topic is how computer AI has changed ‘Range of Influence’  (ROI) or ‘Zone of Control’ (ZOC) analysis. Range of Influence  and Zone of Control are terms that can be used interchangeably. Basically, what they mean is, “how far can this unit project its power.”

One of the first appearances of range as a wargame variable was in Livermore’s 1882 American Kriegsspiel: A Game for Practicing the Art of War Upon a Topographical Map (superb article on American Kriegsspiel here).  Note that incorporated into the ‘range ruler’ (below) is also a linear ‘effectiveness scale’.

Detail of Plate IV, “The Firing Board,” from the American Kriegsspil showing a ruler for artillery range printed on the top. Note the accuracy declines (apparently linearly) proportional to the distance. Click to enlarge.

The introduction of hexagon wargames (first at RAND and then later by Roberts at Avalon Hill; see here) created the now familiar 6 hexagon ‘ring’ for a Zone of Control:

Zone of Control explained in the Avalon Hill Waterloo (1962) manual. Author’s Collection.

I seem to remember an Avalon Hill game where artillery had a 2 hex range; but I may well be mistaken.

Ever since the first computer wargames that I wrote back in the ’80s I have earnestly tried to make the simulations as accurate as possible by including every reasonable variable. With the General Staff Wargaming System we’ve added two new variables to ROI: 3D Line of Sight and an Accuracy curve.

Order of Battle for Antietam showing Hamilton’s battery being edited. Screen shot from the General Staff Army Editor. Click to enlarge.

In the above image we are editing a Confederate battery in Longstreet’s corps. Every unit can have a unique unit range and accuracy. You can select an accuracy curve from the drop-down menu or you can create a custom accuracy curve by clicking on the pencil (Edit) icon.

Window for editing the artillery accuracy curve. There are 100 points and you can set each one individually. This also supports a digitizing pen and drawing tablet. Screen shot from General Staff Army Editor. Click to enlarge.

In the above screen shot from the General Staff Wargaming System Army Editor the accuracy curve for this particular battery is being edited. There are 100 points that can be edited. As you move across the curve the accuracy at the range is displayed in the upper right hand corner. Note: every unit in the General Staff Wargaming System can have a unique accuracy curve as well as range and every other variable.

Screen shot showing the Range of Influence fields for a scenario from the 1882 American Kriegsspiel book. Click to enlarge.

In the above screen shot from the General Staff Sand Box (which is used to test AI and combat) we see the ROI for a rear guard scenario from the original American Kriegsspiel 1882. Notice that the southern-most Red Horse Artillery unit has a mostly unobstructed field of vision and you can clearly see how accuracy diminishes as range increases. Also, notice how the ROI for the one Blue Horse Artillery unit is restricted by the woods which obstructs its line of sight.

Screen shot of Antietam (dawn) showing Red and Blue ROI and battle lines. Click to enlarge.

In the above screen shot we see the situation at Antietam at dawn. Blue and Red units are rushing on to the field and establishing battle lines. Again, notice how terrain and elevation effects ROI. In the above screen shot Blue artillery’s ROI is restricted by the North Woods.

The above ROI maps (screen shots) were created by the General Staff Sand Box program to visually ‘debug’ the ROI (confirm that it’s working properly). We probably won’t include this feature in the actual General Staff Wargame unless users would like to see it added.

This is a topic that is very near and dear to my heart. Please feel free to contact me directly if you have any questions or comments.

Computational Military Reasoning Part 4: Learning

In my previous three posts on computational military reasoning (tactical artificial intelligence) we introduced my algorithms for detecting the absence or presence of anchored and unanchored flanks, interior lines and restricted avenues of attack (approach) and retreat. In this post I present my doctoral research1)TIGER: An Unsupervised Machine Learning Tactical Inference Generator which can be downloaded here which utilizes these algorithms, and others, in the construction of an unsupervised machine learning program that is able to classify the current tactical situation (battlefield) in the context of previously observed battles. In other words, it learns and it remembers.

‘Machine learning’ is the computer science term for learning software (in computer science ‘machine’ often means ‘software’ or ‘program’ ever since the ‘Turning Machine'2)https://en.wikipedia.org/wiki/Turing_machine which was not a physical machine but an abstract thought experiment.

There are two forms of machine learning: supervised and unsupervised machine learning. Supervised machine learning requires a human to ‘teach’ the software. An example of supervised machine learning is the Netflix recommendation system. Every time you watch a show on Netflix you are teaching their software what you like. Well, theoretically. Netflix recommendations are often laughingly terrible (no, I do not want to see the new Bratz kids movie regardless of how many times you keep recommending it to me).

Unsupervised machine learning is a completely different animal. Without human intervention an unsupervised machine learning program tries to make sense of a series of ‘objects’ that are presented to it. For the TIGER / MATE program, these objects are battles and the program classifies them into similar clusters. In other words, every time TIGER / MATE ‘sees’ a new tactical situation it asks itself if this is something similar (and how similar) to what it’s seen before or is it something entirely new?

I use convenient terms like ‘a computer tries to make sense of’ or a ‘computer sees’ or a ‘computer thinks’ but I’m not trying to make the argument that computers are sentient or that they see or think. These are just linguistic crutches that I employ to make it easier to write about these topics.

So, a snapshot of a battle (the terrain, elevation and unit positions at a specific time) is an ‘object’ and this object is described by a number of ‘attributes’. In the case of TIGER / MATE, the attributes that describe a battle object are:

  • Interior Line Value
  • Anchored / Unanchored Flank Value
  • REDFOR (Red Forces) Choke Points Value
  • BLUEFOR (Blue Forces) Choke Points Value
  • Weighted Force Ratio
  • Attack Slope

The algorithms for calculating the metrics for the first four attributes were discussed in the three previous blog posts cited above. The algorithms for calculating the Weighted Force Ratio and Attack Slope metrics are straightforward: Weighted Force Ratio is the strength of Red over the strength of Blue weighted by unit type and the Attack Slope is just that: the slope (uphill or downhill) that the attacker is charging over.

TIGER / MATE constructs a hierarchical tree of battlefield snapshots. This tree represents the relationship and similarity of different battlefield snapshots. For example, two battlefield situations that are very similar will appear in the same node, while two battlefield situations that are very different will appear in disparate nodes. This will be easier to follow with a number of screen shots. Unfortunately, we first have to introduce the Category Utility Function.

So, first let me apologize for all the math. It isn’t necessary for you to understand how the TIGER / MATE unsupervised machine learning process works, but if I don’t show it I’m guilty of this:

The Category Utility Function (or CU, for short) is the equation that determines how similar or dissimilar too objects (battlefields) are. This it the CU function:

‘Acuity’ is the concept of the minimum value that separates two ‘instances’ (in our case, battles). It has to have a value of 1.0 or very bad things will happen.

 

So, let’s recap what we’ve got:

  • A series of algorithms that analyze a battlefield and return values representing various conditions that SMEs agree are significant (flanks, attack and retreat routes, unit strengths, etc., etc).
  • A Category Utility Function (CU) that uses the products of these algorithms to determine how similar analyzed battlefields are.

So now, we just need to put this all together. A battlefield (tactical situation) is analyzed by TIGER / MATE. It is ‘fed’ into the unsupervised machine learning function and, using the Category Utility Function one of four things happen:

  1. All the children of the parent node are evaluated using the CU function and the object (tactical situation)is added to an existing node with the best score.
  2. The object is placed in a new node all by itself.
  3. The two top-scoring nodes are combined into a single node and the new object is added to it.
  4. A node is divided into several nodes with the new objected to one of them.

These rules (above) construct a hierarchical tree structure. TIGER was fed 20 historical tactical situations (below):

  1. Kasserine Pass February 14,1943
  2. KasserinePass February 19, 1943
  3. Lake Trasimene, 217 BCE
  4. Shiloh Day 2
  5. Shiloh Day 1, 0900 hours
  6. Shiloh Day 1, 1200 hours
  7. Antietam 0600 hours
  8. Antietam 1630 hours
  9. Fredericksburg, December 10
  10. Fredericksburg, December 13
  11. Chancellorsville May 1
  12. Chancellorsville May 2
  13. Gazala
  14. Gettysburg, Day 1
  15. Gettysburg, Day 2
  16. Gettysburg, Day 3
  17. Sinai, June 5
  18. Waterloo, 1000 hours
  19. Waterloo, 1600 hours
  20. Waterloo, 1930 hours

In addition to these 20 historical tactical situations five hypothetical situations were created labeled A-E. This is the resulting tree which TIGER created:

The hierarchical tree created by TIGER from 20 historical and 5 hypothetical tactical situations. The numbers in the nodes refer to the above legend. Battles placed in the same nodes are considered very similar by TIGER. Click to enlarge.

If we look at the tree that TIGER constructed we can see that it placed Shiloh Day 1 0900 hours and Shiloh Day 1 1200 hours together in cluster C35. Indeed, as we look around the tree we observe that TIGER did a remarkable job of analyzing tactical situations and placing like with like. But, that’s easy for me to say, I wrote TIGER. My opinion doesn’t count. So we asked 23 SMEs which included:

  • 7 Professional Wargame Designers
  • 14 Active duty and retired U. S. Army officers including:
  • Colonel (Ret.) USMC infantry 5 combat tours, 3 advisory tours
  • Maj. USA. (SE Core) Project Leader, TCM-Virtual Training
  • Officer at TRADOC (U. S. Army Training and Doctrine Command)
  • West Point; Warfighting Simulation Center
  • Instructor, Dept of Tactics Command & General Staff College
  • PhD student at RMIT
  • Tactics Instructor at Kingston (Canada)

And in a blind survey asked them not what TIGER did but what they would do. For example:

Twenty-three SMEs were asked this question: is this hypothetical tactical situation (top) more like Kasserine Pass or Gettysburg?. Click to enlarge.

And this is how the responded:

Results from 23 SMEs answering the above question. Overwhelmingly the SMEs agreed that that the hypothetical tactical situation was most like the battle of Kasserine Pass.

So, 91.3% of SMEs agreed that the hypothetical tactical situation was more like Kasserine Pass than Gettysburg Day 1. Unbeknownst to the SMEs TIGER had already classified these three tactical situations like this:

How TIGER classified Kasserine Pass (1), Gettysburg Day 1 (14) and a hypothetical tactical situation (B). The cluster C1 contains two tactical situations that both have restricted avenues of attack caused by armor traveling through narrow mountainous passes. These passes also partially create restricted avenues of retreat. REDFOR does not have anchored flanks.Click to enlarge.

In conclusion: over the last four blog posts about Computational Military Reasoning we have demonstrated:

  • Algorithms for analyzing a battlefield (tactical situation).
  • Algorithms for implementing offensive maneuvers.
  • An Unsupervised Machine Learning system for classifying tactical situations and clustering like situations together. Furthermore, this system is never-ending and as it encounters new tactical situations it will continue this process which enables the AI to plan maneuvers based on previously observed and annotated situations.

This is the AI that will be used in General Staff. It is unique and revolutionary. No computer military simulation – either commercially available or any military simulation used by any of the world’s armies – employ an AI of this depth.

As always, please feel free to contact me directly with questions or comments. You can use our online email form here or write to me directly at Ezra [at] RiverviewAI.com.

References

References
1 TIGER: An Unsupervised Machine Learning Tactical Inference Generator which can be downloaded here
2 https://en.wikipedia.org/wiki/Turing_machine

Computational Military Reasoning (Tactical Artificial Intelligence) Part 1

I coined the phrase ‘computational military reasoning’ in grad school to explain what my doctoral thesis in computer science was about. ‘Computational reasoning’ is a formal method for solving problems (technically, you don’t even need a computer). But, for our purposes it means a computer solving ‘human-level’ problems. A classic example of this would be calculating the fastest route on a map between two points. In computer science we call this a ‘least weighted path’ algorithm and I did my Q (Qualifying) Exam on this subject. I have also written extensively on the subject including these blog posts.

So, ‘computational military reasoning’ is a, “computer solving human-level military problems.” Furthermore, we can divide computational military reasoning into two subcategories: strategic and tactical (Russian military dogma also adds a third category, ‘grand strategy’); however, for now, let’s concentrate on tactical artificial intelligence; or battlefield decisions.

Tactical AI is divided into two parts: analyzing – or reading – the battlefield and acting on that information by creating a set coherent orders (commonly known as a COA or Course of Action) that exploit the weaknesses in our enemy’s position that we have found during our battlefield analysis.

 

It is said that as Napoleon traveled across Europe with his staff he would question them about the terrain that they were passing; “Where is the best defensive position? What are the best attack routes?” Where would you position artillery? What ground is favorable for cavalry attack?”

We take it for granted that such analysis of terrain and opposing forces positioned upon it is a skill that can be taught to humans. My doctoral research 1)TIGER: An Unsupervised Machine Learning Tactical Inference Generator; This thesis can be downloaded free of charge here. successfully demonstrated the hypothesis that an unsupervised machine learning program could also learn this skill and perform battlefield analysis that was statistically indistinguishable2)Using a one sided Wald test resulted in  p = 0.0001.In other words, it was extremely unlikely that TIGER was ‘guessing correctly’. from analyses performed by Subject Matter Experts (SMEs) such as instructors at West Point and active duty combat command officers.

Supervised & Unsupervised Machine Learning

Netflix recommendations are a supervised learning program. Every time you ‘like’ a movie the program ‘learns’ that you like ‘documentaries’; for example. Any program that has you ‘like’ or ‘dislike’ offerings is a supervised learning program. You are the supervisor and by clicking on ‘like’ or ‘dislike’ you are teaching the program.

TIGER is an unsupervised machine learning program. That means it has to figure everything out for itself. Rather than being taught, TIGER is ‘fed’ a series of ‘objects’ that have ‘attributes’ and it sorts them into like categories. For TIGER the objects are snapshots of battlefields.

Screen capture from TIGER. An ‘object’ has been loaded into TIGER for analysis; in this case a ‘snapshot’ of the battle of Antietam at 1630 hours on September 17, 1863. Click to enlarge.

How TIGER perceives the battlefield

When you and I look at a battlefield our brains, somehow, make sense of all the NATO 2525B icons scattered around the topographical map. I don’t know how our brains do it, but this is how TIGER does it:

Screen capture from TIGER: How TIGER converts unit positions into lines and frontages using a Minimum Spanning Tree (MST). Click to enlarge.

By combining 3D Line of Sight with Range of Influence (how far weapons can fire and how accurate they are at greater distances displayed, above, with lighter colors) with a Minimum Spanning Tree algorithm3)Kruskal’s algorithm, https://en.wikipedia.org/wiki/Kruskal%27s_algorithm the above image is how TIGER ‘sees’ the battlefield of Antietam. This is an important first step for evaluating object attributes.

How to determine the attribute of anchored or unanchored flanks

Battlefields are ‘objects’ that are made up of ‘attributes’. One of these attributes is the concept of anchored and unanchored flanks. While anyone who plays wargames probably has a good idea what is meant by a ‘flank’, following formal scientific methods I had to first prove that there was agreement among Subject Matter Experts (SMEs) on the subject. This is from one of the double-blind surveys given to SMEs:

Screen shot from online double-blind survey of Subject Matter Experts on identifying the presence of Anchored and Unanchored Flanks. Click to enlarge.

And their responses to the situation at Antietam:

Subject Matter Experts response to the question of the presence of Anchored or Unanchored flanks at Antietam. Click to enlarge.

And another double-blind survey question asked of the SMEs about anchored or unanchored flanks at Chancellorsville:

Response to double-blind survey question asked of SMEs about anchored and unanchored flanks at Chancellorsville. Click to enlarge.

So, we have now proven that there is agreement among Subject Matter Experts about the concept of ‘anchored’ and ‘unanchored’ flanks and, furthermore, some battlefields exhibit this attribute and others don’t.

Following is a series of slides from a debriefing presentation that I gave to DARPA (Defense Advanced Research Projects Agency) as part of my DARPA funded research grant (W911NF-11-200024) describing the algorithm that MATE (the successor to TIGER) uses to calculate if a flank is anchored or unanchored and how to tactically exploit this situation with a flanking maneuver. This briefing is not classified. Click to enlarge slides.

How to generate a Course of Action for a flank attack

Once TIGER / MATE has detected an ‘open’ or unanchored flank it will then plot a Course of Action (COA) to maneuver its forces to perform either a Turning Maneuver or an Envelopment Maneuver. Returning to the previous DARPA debriefing presentation (Click to enlarge):

MATE analysis of the battle of Marjah (Operation Moshtarak February 13, 2010)

The following two screen captures are part of MATE’s analysis of the battle of Marjah suggesting an alternative COA  (envelopment maneuver) to the direct frontal assault that the U. S. Marine force actually performed at Marjah. Click to enlarge:

Conclusions & Comments about Computational Military Reasoning (Tactical Artificial Intelligence) & Battlefield Analysis (Part 1)

Usually, at this point when I give this lecture, I look out to my audience and ask for questions. I really don’t want to lose anybody and we’ve got a lot more Tactical AI to talk about. So far, I’ve only covered how my programs (TIGER / MATE) analyze a battlefield in one particular way (does my enemy – OPFOR in military terms – have an exposed flank that I can pounce on?) and there is a lot more battlefield analysis to be performed.

It’s easy, as a computer scientist, to use computer science terminology and shorthand for explaining algorithms. But, I worry that the non computer scientists in the audience will not quite get what I’m saying.

Do you have any questions about this? If so, I would really like to hear from you. I’ve been working on this research for my entire professional career (see A Wargame 55 Years in the Making) and, frankly, I really like talking about it. As a TA said to me many years ago when I was an undergrad, “There are no stupid questions in computer science.” So, please feel free to write to me either using our built in form or by emailing me at Ezra [at] RiverviewAI.com

References

References
1 TIGER: An Unsupervised Machine Learning Tactical Inference Generator; This thesis can be downloaded free of charge here.
2 Using a one sided Wald test resulted in  p = 0.0001.In other words, it was extremely unlikely that TIGER was ‘guessing correctly’.
3 Kruskal’s algorithm, https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

A Wargame 55 Years in the Making (Part 5)

In June, 2009 I successfully defended my thesis and was awarded a doctorate of computer science by the University of Iowa. What followed were some of the most productive years of my professional career. I designed, programmed, project managed and was principal investigator on:

MARS: Military Advanced Real-time Simulator (2009)

OneSAF is the “Semi Automated Forces” wargame / simulator used for training by the US Army. It relies on ‘pucksters’ (see pucksters in this blog) who are usually retired military officers who make all the moves for OPFOR (Opposition Forces), MARS provided an intuitive Graphical User Interface (GUI) for the modification and running of OneSAF scenarios.

Screen capture of the MARS project for the US Army. MARS was a front end to facilitate creating and managing scenarios run on the Army's OneSAF military simulator. Click to enlarge.

Screen capture of the MARS project for the US Army. MARS was a front end to facilitate creating and managing scenarios run on the Army’s OneSAF military simulator. The ‘Magic Bomb’ option is the puckster’s term for ‘magically’ removing a unit from the simulation. Click to enlarge.

CAPTURE: Cognitive and Physiological Testing Urban Research Environment (2010)

While on the surface CAPTURE appears to be a standard ‘shooting gallery’ program it was actually designed to test and store data about how returning veterans saw targets, ‘spiraled in’ on targets and reacted. There were two parts to CAPTURE: the first allowed the tester to set up any particular scenario they wanted (top image, below) and the second part (bottom image, below) was run using a projector, a large screen, an M16 air soft gun with Wii remote and laser mounted to the barrel and an IR camera. CAPTURE was done for the Office of Naval Research (Marines).

Two screens showing the CAPTURE program. The top screen shows the interface for creating target scenarios. The bottom screen is one of the the shooting ranges generated by CAPTURE. Click to enlarge.

Two screens showing the CAPTURE program. The top screen shows the interface for creating target scenarios. The bottom screen is one of the the shooting ranges generated by CAPTURE. Click to enlarge.

NexGEN Behavior Composer (2011)

NexGEN Behavior Composer was another front-end project for OneSAF. Enemy units in OneSAF use scripted AI behavior written in XAML. These AI scripts often contained errors. NexGEN allowed the puckster to select a behavior from a hierarchical tree structure (top image, below) and click and drag it to a composing canvass where a series of behaviors could be joined together (bottom image, below). The artwork for the behaviors was done by my old friend, Ed Isenberg, who has worked with me on games since the ’80s.

Screen shot of NexGEN Behavior Composer which facilitated creating OneSAF behaviors by clicking and dragging behavior icons. Click to enlarge.

Screen shot of NexGEN Behavior Composer which facilitated creating OneSAF behaviors by clicking and dragging behavior icons. This is the hierarchical tree structure of behavior primitives. Click to enlarge.

And example of a OneSAF behavior composed of NexGEN behavior icons. Click to enlarge.

A series of behaviors have been placed together to create a complex behavior (a unit fires, conducts reconnaissance, waits for one minute, moves and then occupies a position). Click to enlarge.

MATE: Machine Analysis of Tactical Environments (2012)

Funded by a DARPA (Defense Advanced Research Project Agency) research grant (W911NF-11-200024) MATE added a new level of battlefield analysis to the TIGER project. Building on the previous nine years of research MATE had the capability of generating a series of ‘predicate statements’ that described the battlefield and then using them to construct a hypothetical syllogism that resulted in a precise Course of Action (COA) for BLUEFOR (US forces). MATE then output this COA as an HTML file and automatically launched a browser to view the COA. MATE was designed to be available to commanders in the field via a small handheld device like a tablet. It was able to perform battlefield analysis in less than 10 seconds.

Consider this real-world situation from the Battle of Marjah:

Given the same data that the commander had in the above video MATE returned this COA (complete with unit paths and ETAs):

MATE's analysis and COA for the Battle of Marjah: a right-flank envelopment maneuver with two infantry platoons while a fixing force of the mortar platoon and a third infantry platoon kept the enemy's attention. Click to enlarge.

MATE’s analysis and COA for the Battle of Marjah: a right-flank envelopment maneuver with two infantry platoons while a fixing force of the mortar platoon and a third infantry platoon kept the enemy’s attention. Click to enlarge.

To see the entire MATE analysis and COA results for the Battle of Marjah click here. (this will load a PDF of MATE’s HTML output on a new tab).


Unfortunately, about the time that I demonstrated MATE to DARPA a series of unfortunate events occurred that were to change my life. The United States Congress passed the Sequestration Transparency Act of 2012. This resulted in a 10% across the board cut in all federal spending. DARPA seemed especially hard hit and they stopped all funding for 4CI (Command, Control, Communications, Computers and Intelligence) research. Only a few years after receiving my doctorate, specifically so I could be the Principal Investigator on government funded 4CI research, I was out of a job.

Without any research funding, and not wanting to relocate I returned to the University of Iowa as a Visiting Assistant Professor teaching Computer Game Design and CS1.  I love teaching. And I am extraordinarily proud of receiving the highest student evaluations in the department of Computer Science but I didn’t have as much strength as I used to have. I found myself out of breath and exhausted after a lecture. And then my kidneys began to inexplicably fail.

In 2013, because of the efforts of superb doctors Kelly Skelly and Joel Gordon at the University of Iowa Hospital, I was diagnosed with a very rare and usually fatal blood disease, AL amyloidosis.  In 2014, thanks to the Affordable Care Act, I was hospitalized for 32 days, my immune system  was purposely destroyed and I received an autologous bone marrow / stem cell transplant. This was followed up by a year of chemotherapy. Being severely immunocompromised I have contracted pneumonia six times in the last two years. Now, against the odds (and I’m a guy that deals with probabilities a lot so I’m being literal) I’ve completely recovered. My kidneys and lungs are permanently damaged but I’m not going to die from this disease. But, it also means I can’t teach anymore, either.

Luckily, I can still sit at a desk and write computer code. General Staff is my return to writing a commercial computer wargame and it will be the first commercial implementation of my tactical AI algorithms that I have been developing since 2003.

I need to produce a game that you grognards want. And, that means next week I will be posting a new gameplay survey to pin down exactly what features you want to see in the new game. As always, please feel free to contact me directly (click here) if you have any questions or comments.